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In this paper we introduce a new Monte Carlo procedure based on the Markov 
property. This procedure is particularly well suited to massively parallel com- 
putation. We illustrate the method on the critical phenomena of the well known 
one-dimensional Ising model. In the course of this work we found that the 
autocorrelation time for the Metropolis Monte Carlo algorithm is closely given 
by the square of the correlation length. We find speedup factors of the order of 
1 million for the method as implemented on the CM2 relative to a serial 
machine. Our procedure gives error estimates which are quite consistent with 
the observed deviations from the analytically known exact results. 

KEY WORDS:  Monte Carlo; Markov property; Ising model; critical 
phenomena. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

The purpose of this paper is to introduce a new method of acceleration for 
Monte Carlo calculations. It is specifically applicable to problems which 
possess the Markov property. We illustrate this method on the simple, 
well-known, one-dimensional, spin-l/2 Ising model. The usefulness of the 
method, of course, does not depend on the simple nature of this example. 
In our example we give exact analytic formulas for all the required 
quantities. From the operational point of view they simply yield a table 
of values and can be replaced with numerically obtained results in more 
complex models. Typically they can be computed once and for all at the 
beginning and simply stored, as we discuss in more detail below. In our 
example, the basic effect of the method is to replace the problem with a 
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new problem which is effectively further from the critical point and so 
easier to compute. 

A large class of important problems possess a key mathematical 
property called the Markov property. This property permits the intro- 
duction of new, specifically massively parallel, Monte Carlo methods to 
compute the solutions. The Markov property is simply stated. Consider a 
region N interior to a domain @ over which a problem is stated. Let the 
problem variables on the boundary c3N of N ( ~  n ~ = ~ )  be fixed. This 
statement is meant to include values, and where appropriate, derivatives, 
etc. Then the problem is said to possess the Markov property if any expec- 
tation value of problem variables supported only in N is independent of all 
the problem variables supported in ~ \ ( N  ~ 8N). In the simple case of the 
one-dimensional Ising model, this definition means that if we fix the values 
of spins a; and aj, where i < j ,  so that we can define ( 8 ~ =  {i,j}) 
~-= {kl i < k < j } ,  9 =  {kl 1 <.k<~n}, then the partition function for this 
model becomes 

a k =  +_1 1 
l<<.k<~n 

k ~ i , j  

ak = +1 k E ~ \ ( ~ O Y l )  
k e ~\(~ w 02r 

ak +_1 k e ~  
k E N '  

In the case of periodic boundary conditions, we set a , + l =  al and for free 
boundary conditions we set or, +1= 0. From the factorization of the parti- 
tion function in (1.1) it is clear that the expectation value of any combina- 
tion of spin variables supported in N depends only on the second factor 
and not at all on the first factor, since we are holding ai and ~j fixed. 

The Markov-property Monte Carlo method consists of exploiting this 
simple observation. It will be particularly useful for parallel computation. 
We remark that some previous use has been made of the simplest version 
of this property by dividing bipartite lattices into red and black vertices 
and summing in parallel over each color separately. The basic idea of our 
method is to divide the problem space up into a lot of small blocks which 
are separated from each other by a set of surfaces. That is to say, we break 
the problem up like a large mass of soap bubbles. We then fix the problem 
variables on the surfaces (soap bubbles) and sum over the blocks (interiors 
of the soap bubbles) in parallel. We then adjust the surface problem 
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variables by a Monte Carlo method. In the case of the one-dimensional 
Ising model which we will use to illustrate this technique, we break the 
n-spin system up into j blocks of m + 1 spins In =j(m + 1)]. We then sum 
over the m interior spins in each block and adjust the remaining j spins by 
Monte Carlo. In general there is a choice as to how to do the summation 
over the spins which are in the interior. Since they depend only on bound- 
ary spin values, if the number of cases is not too numerous, it is clearly 
worthwhile to tabulate the results and not to have to recompute them at 
every step. In the case of the one-dimensional model there are just four 
cases: (1"]'), (1"+), ($1"), and ($+). Here we have simply computed the results 
analytically because of the simple nature of this problem. When the number 
of boundary cases is too numerous to tabulate, one can compute the sums 
over the block interiors directly in parallel, or one could perform a Monte 
Carlo computation on the interior of each block in parallel to obtain the 
results to adequate accuracy. Then the outer Monte Carlo procedures can 
be carried out on the surface problem variables. It is also sometimes useful 
to combine computation with tabulation so as to concatenate two smaller 
tables to give by a fairly quick computation results which are too large 
to be conveniently tabulated. For example, in the two-dimensional Ising 
model a 3 x 7 block has 16 nearest-neighbor spins or 216 = 65,536 boundary 
states. The equivalent of this table can be obtained by summing over the 
three spins (eight states) which join two 3 x 3 blocks each of which has 
eight nearest-neighbor spins or 28= 256 boundary states. This procedure is 
a further application of the Markov property. 

More specifically, for our illustration, we use the following algorithm. 
First, set every (m + 1)th spin. That is, set j of the spins to the value + 1, 
where the total number of spins is n =j (m+ 1). Second, sum over all 
possible values for the remaining jm spins. These spins can be divided into 
j blocks of m spins each, and the summation in each block is independent 
of that in all other blocks and so these summations can be performed in 
parallel. Since the one-dimensional Ising model is so simple, instead of 
having the computer do those sums, the results of which depend after all 
only on the values of the block-end-spins, we can give the necessary results 
for each of the statistics to be gathered by means of an analytic computa- 
tion (see Section 2), but, as remarked above, for blocks of reasonable size 
even in more complex models, this information could have been directly 
numerically computed once at the beginning of the computation and 
simply tabulated. In any event, this organization of the work eliminates a 
great deal of redundant calculation! This second step gives one of the terms 
of the partially--summed partition function. This "new" partially-summed 
partition function is now thought of as a function of the remaining j spins 
alone. Third, make a Monte Carlo sweep over those j spins. We use the 
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simple Metropolis algorithm to do this sweep, and implement it by making 
a red-black dissection of those spins and then doing all spins of each color 
in parallel. Repeat the second and third steps until sufficient statistics have 
been gathered, with due attention, as detailed below, to the autocorrelation 
problem. 

From the point of view of the statistical physics of critical phenomena, 
one outstanding unresolved problem revolves around the "renormalization 
group hypothesis. ''(1) By virtue of this hypothesis, all critical phenomena in 
a fixed spatial dimension, independent of the details of the atomic and 
molecular interactions, involving local variables of a given symmetry 
group exhibit a universal behavior. This universality means that it is only 
necessary to compute explicitly the behavior of one representative of each 
class, a considerable saving of effort. In the case of the three-dimensional 
Ising model, for example, the renormalization group hypothesis says that 
in the critical-point limit the Ising model corresponds to the same value of 
the renormalized coupling constant as does the strong-coupling limit of ~4 
boson field theory. There is some series and Monte Carlo evidence to 
suggest the contrary. A goal would be to develop a sufficiently powerful 
Monte Carlo procedure to be able to resolve this question clearly. We will 
therefore turn our attention in this paper toward the renormalized coupling 
constant for the one-dimensional Ising model. 

In Section 2 we derive the necessary formulas for the one-dimensional 
Ising model. The situation for the case of periodic boundary conditions is 
fairly well known and the formulas are relatively simple. When the end 
spins of a block of spins are fixed and general, the results are not always 
known nor as simple to express. The breakdown of the required quantities 
into relevant independent parts and their evaluation is straightforward but 
tedious. 

In Section 3 we begin the discussion of the application of our Monte 
Carlo procedure. Since the goal of this paper is to illustrate this method, 
we have used a simple Metropolis algorithm to perform the Monte Carlo 
part of the procedure. We find that the autocorrelation time for the 
magnetization is closely equal to the correlation length squared. 

In Section 4 we give our Monte Carlo results. We have adopted the 
procedure of sampling only one sweep [spin update of the whole (Monte 
Carlo) lattice] per autocorrelation time. We set a goal to produce suscep- 
tibilities accurate to about~0.3 %. A total of about 200,000 independent 
sweeps is sufficient to achieve this goal. We have broken them down into 
40 coarse-grain samples of about 5000 each. This procedure is sufficient so 
that the error estimates computed on the basis of the coarse-grain data do 
not seem to differ in a statistically significant manner from the observed 
distribution of differences with the exactly known answers. Relative to a 



Markov-Property MC method 625 

serial machine, this method shows a speedup factor of (m + 1)3 times the 
number of parallel processors. This amounts to a factor of several million 
for some of the cases run. In terms of the dynamic critical exponent z the 
speedup factor (m + 1) 3 becomes (m + 1) ~ +z 

2. F INITE-SIZE O N E - D I M E N S I O N A L  ISING M O D E L  
F O R M U L A S  

In order to pursue the investigation of this method we need to derive 
a number of formulas for various quantities for a finite linear Ising chain (~) 
with the end spins fixed. This work is straightforward but rather tedious. 
We will in the main omit the derivations and comment only on the general 
approach for a specific result. In cases where it is impractical to compute 
these formulas analytically, they can usually instead be supplied numeri- 
cally and the results tabulated. The goal is to compute the renormalized 
coupling constant. (2~ It can be given by 

lira g * ( K ) =  g* (2.1) 
T--+ T~ 

where K = J / k T ,  with J the exchange integral, T the temperature, k 
Boltzmann's constant, and where 

v cq2z(K)/OH 2 
g( K) = aa z2( K ) {a( K ) (2.2) 

with v the volume per unit cell, a the lattice spacing, and d the spatial 
dimension; v---a and d=  1 here. We denote the magnetic field by H, the 
(reduced) magnetic susceptibility by 56 and the correlation length by 4. It 
is convenient to note that we may write, for a chain of length n, 

x(K)= 1 ~ ~ ( a / rk )  (2.3) 
g / .  

j = l  k= l  

{(K,2='I~- ~ (j-k)'(.,crk)]/[2,(K)] (2.4) 
n j I k=l 

- (~rjakal~m) - 3n [;{(K)] 2 (2.5) 
63H2 n j = l  k = l  / = 1  r n = l  

and for the energy 

O *'e = -- ( O ' j 0 " j  + 1 ) ( 2 . 6 )  
F I j =  1 
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The notation ( . )  means the unnormalized expectation value with respect 
to the partition function, 

/ tq N 

Z= ~ exp(K~ ajaj+l) (2.7) 
a j =  +1 j = l  \ / 

where, by periodic boundary conditions, a n = o- o. 
The strategy is now to break down the complete sum into blocks of 

m + 1 spins each and to sum explicitly over the first m (i = 1,..., m) of the 
spins. We can always do this summation, independent of all the other spins 
in the system, because by the Markov  property, only the i = 0 and i = m + 1 
spins have any effect on these sum values. This property can be seen 
directly from the Hamiltonian (2.7) in this simple case. Thus, for example, 
we can write, assuming that n = (m + 1 )j, 

O" k g ( / - - 1 ) ( m + l )  -]- ( a ( 1  1 ) ( m + l ) + 2 ) ~ g /  
k 1 / = 1  2 = 1  

+ g0-l(m + 1) 
i = 1  
i~l  

where ( . ) r  is the constrained expectation value with respect to (2.7) 
within the lth block with all the 0-t(m+ 1) fixed and the ( - ) ~  is the remain- 
ing expectation value with respect to the j remaining spins. If we carry out 
these sums, we obtain 

( 1 ) ~ , =  (2 cosh K)  m+l  (1_[_ _1 0- 2 ~-~m+llOl~m+l) tanhm+l K) 

=(cosh(2m+2) K-sinh2m+2 K)mexp(Kma(l_l)(m+llal(m+ll) (2.9) 

_10- ~, i 
2 ( / - - 1 ) ( r e + l )  -t- (Gtl--1)(m+l)+).>~l~-2(Yl( m+l ) 

2 = 1  

=(2coshK)m+l eZK(1-tanhm+l K)�88 (2.10) 

where we define Km by 

eosh m + 1 K -  sinh m + 1 K 
exp( - 2Kin) = cosh m + 1 K + sinh m + 1 K (2. t 1 ) 

These equations can be derived by using the usual 2 x 2 matrix formalism 
for the one-dimensional Ising model. If we now compute the ratio of (2.10) 
to (2.9), we obtain the factor for 

2 0 - ( l  1 ) (m+ 1) -~ (0-(l 1)(m+l)§ 
2 = 1  

+ t a n h m ~  ~ ~(a(t_l)tm+~)+at(m+~l) (2.12) 
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to be used in Monte Carlo averages against the partition function when 
rewritten in terms of the nonexplicitly summed-over spins as 

Z = 2mJ(cosh 2m K -  sinh 2m K) j/2 

X 2 exp(Km~ff(,-1)(m+l)~rl(m+l)! (2.13) 
cr/(m+l):  •  l =  1 \ / 

To obtain the formula for the susceptibility, when aj and ak of (2.3) are in 
different blocks, we can merely multiply the above results. When they are 
in the same block, we need the results for the factor for 

0"(l 1)(m + 1) -[- C T ( l - - 1 ) ( m + l ) + ; ~ - ] - g ( 7 l ( m + l )  
2 = 1  / / c g !  

-- e4K( 1 -- a(l-  l)(m+ l)~ + 1)) 

+ (rn + 1) e x p ( 2 K -  2Km o-(z_ X)(m + 1)aZ(m + l)) (2.14) 

This result seems most conveniently derived by diagonalization of the 2 x 2 
matrix formulation in the presence of a magnetic field and then differen- 
tiating the results with respect to that field. 

If we now add up these results, we get for the susceptibility 

= -- O'l(m + 1 ) Z n ~ 1 

+ B(m, K) r K )  (2.15) 
l 1 

where the coefficients are 

A(m'K)=e4I~(1-tanhm+lK) 2 1  + tanh m + 1 

1 1 4x 2(re+l) e2~tanhm+jK (2.16) 
B(m, K) = - -~ A(m, K) + ~ e 1 - tanh 2m + 2 K 

(~ + t a n k  2m+2K'~ 1 4~ 
C (m , j ,K )=(m+l ) j e  2K ~ j - - ~ j [ e  +A(rn, K)] 

and where the spins are distributed according to (2.11) and (2.13). 
Considerable use has been made of the periodic boundary conditions. We 
can also express the energy as 

g=D(m, K)+-E(m,  K) a(Z--J)(m+~al(m+ll (2.17) 
J I I :~4 
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where the coefficients are  

t anh  K - -  tanh  2m + 1 K 
D(m, K) - 1 - t anh  2m + 2 K 

(2.18) 
tanh  m K(1 - t anh  2 K) 

E(m, K) - 1 - t anh  2m + 2 K 

In order  to compute  02z/~h 2, we will need to split  up the quad rup le  
sum in (2.5) in to  par t s  tha t  are  in the same b lock  of m + 1 spins and those 
which involve,  by the M a r k o v  p roper ty ,  independen t  spins in different 

blocks.  If we denote  

Sl=l(y{l_l)(m+l)~- ~ a(l 1)(m+l)+2oe l~7l(m+l) (2.19) 
2 = 1  

and  

[I s,] H , ~ .  <s,>., - ( 2 . 2 o )  

then we want  to divide 

j = l  k = l  l = l  m = l  

J J J J 

= E E E E ( 1 - ( ~ 1 2 ~ - ( ~ 1 2 )  
/1 = 1 /2 = i .]3 = 1 ,J4 = 1 

• (1 -- 6~3 q- a~3)(1 --  fi~4 + 6~4)( 1 - -  a 2 3  -[- ( 5 2 1 ) ( 1  - -  (~24 Jr- (524)  

• (1 - 634 + 634)[sj, sj~SjgSj4] 
J J J J 

= Z Z 2 Z ( 1 - 6 ~ 2 ) ( 1 - 6 , 3 )  
j l = l  j 2 = l  j 3 = l  j 4 = l  

x ( 1  -- 614)(1 -- 623)(1 -- 624)(1 -- 634)[Sh ][312 ] [sj,]ESJ4] 
J J ./ 

+ 6 ( / )  E • E (1-(~23)(1-(~24)(l-034)[52][Sj3][Sj4] 
/2 = 1 /3 = 1 ]4 = 1 

J J 

+3(//) Y Z (1-a~4)[sj~j[sj~] 
./3 = 1 ./4 = 1 

J J 

+4(• 2 ~ (1-c~34)[8~][3J4] 
J3 = 1 J4 = 1 

J 

S 4 +(@) Y', [ y4] (2.21) 
,/4 = 1 
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where the 6~v are unity if j r =  j ,  and zero otherwise, and the diagrams in 
parentheses are the linear graphs which represent the term which follows, 
and the numerical coefficients are in fact the number of "strong" embed- 
dings of that figure on the complete four-graph (| or tetrahedron. A 
strong embedding (3) is one for which nearest neighbors on the underlying 
graph must also be nearest neighbors on the unlabeled embedded graph. 
The other embeddings vanish because of the ( 1 - 6 )  factors. In writing 
(2.21) use has been made of the identity ( 1 -  6)2= ( 1 -  6). The expansion 
performed in (2.21) has served to give the results as sums over products of 
factors, each one of which is computed internal to a single block alone. 

If we now expand the ( 1 -  ~) factors in (2.21), we obtain the required 
numerical coefficients as "weak" embeddings (3) on the appropriate underly- 
ing graph. A weak embedding is the number of ways an unlabeled graph 

unlabeled underlying graph. The resulting terms are simple sums 
blocks. If we define the intermediate quantities 

J 
Es,], 7"2 = F, Es}], 

/=1 

fits on the 
over the j 

J 
TI= ~ 

l=1 

J 
Z 4 =  ~ l - S } ] ,  Z 5 = 

l = 1  

J 

r7 = Z Es4], r8 = 
/=1 

J 
V~o= 2 Es}] ~, r , ,  = 

l=1 

then we obtain from (2.21) 

Z [s,qEs}],  
/=1 

J 
F, ES}]ES,], 

l = l  

J 
Z 1-3[ ]4 

/ = I  

J 

T3 = ~ [S,12 
I=1 

J 
T 6 =  2 [Sl "]3 

/=1 

J 
T9= 2 ES}IES,] 2 

l=1 

j = l  k = l  l=1 m = l  

= T 4 - 6T~T3 + 6T~T2 - 6T2 T3 

+ 8T1 T6 - 12T1 Ts + 4T, T4 + 3T22 + 3T 2 - 6Tll 

+ 12T 9 - 3 T 1 o - 4 T  8+ T7 

To make (2.22) fully explicit, we need the results 

ES,] = �89 K)(a(,  ,)(m + 1)+ •l(m+ 1)) 
[ S  2] = C2(m, K) + D2(m, K) a(t 1)(m+ 1)O'l(m + 1) 

[ S  3] = 1C3(m, K)(a(,  1)(m+ 1 ) +  (T,(m+ 1)) 

[ S 4 ] = C 4 (m, K) + 0 4 (m, K) a(l_ 1 )(m + ,)O'l(m + 1) 

(2.22) 

(2.23) 

(2.24) 
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w h e r e  
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CI(m, K)=e2K (~ - tanhm+ l tanh m+7 

1 4x 2Kf 1 +tanh2m+2K) 
C2(m,K)= - ~ e  + ( m + l ) e  ~--tanh2m+2 

( 2 tanhm+l K ) 
D2(m, K) = ~ e 4K - (m + 1 ) e 2K 1 ~ tanh 2----~ 7-~ 

C3(m,K)=3(m+l)e4K+(e2K--3e6K)(~ -tanhm~+:K)+ tanh m + 1 

4K 9 1)2 e4K C4(m , K)= -2e  +-~eSK+3(m+ (2.25) 

-t- (m+l)[(e2K--ge6K)(~ +tanh2m+2K'~~~.) 

_ 6 e  6Ktan _+I_K] 
1 - -  tanh 2m + 2 

4K 9 8K [ / "l+tanh2m+2K'] 
D4(m, K) = 2e - ~ e + (m + 1) _3e 6.: \~- ~ , /  

+ (12e6K--2eiK) (1 - ta--~-+--5 K ) ] t a n h m + l  K 

which are either drawn from those quoted above or derived by the method 
of differentiating with respect to the magnetic field as described above at 
(2.14). If we substitute (2.24) into (2.22) and the results into (2.23), we get, 
using (2.5), 

02Z [Eo(m,j, K)+ E~(m, K) YI(J, Km)+ Ez(m,J, K) Y2(J, Km) aH 2 - 

+ E3(m, K) Y3(J, Km)+ E4(m, j, K) Y4(J, Km) 

+ Es(m, K) Ys(L Km)]/n - 3n[)~(K)] 2 (2.26) 

where 

Ya(j, Km)= ~rt(m+,) 
l 1 

Y2(J, Kin) = at(m+ 1) 
l 1 .r 
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Y3(J, K~) = at(,,,+ l) 
l 1 l=1  

Y4(j, Km)= a(l-1)(~+l)al(m+l) 
l 1 ~ 

)) Ys(J, Km)= 0"(/ 1)(m+ l)(7l(m+ l) 
l 1 

and also where 

Eo(m, j, K) = 

El(m, K)= 

E2(m, j, K) = 

E3(m, K ) =  

E4(m, j, K) = 

Es(m, K)= 

if(I-- 1)(m+ l)O'l(m + 1 ) / ~  

_ 3 C 2 C 2 j 2 +  at~13t-~4 j.2 _~_ 3j2C2_ 3C4 j + 6cf(c2 + D2)j 

- -  3j(C 2 + D 2) - 2C 1 C 3 j + jC 4 

Cl 

-3jC 4 + 6jC~C2 + 8C 4 - 12C~(C2 + D2) + 4C1 C3 

-3C 4 +6C~D2 

_3C~(C2+D2)j+ 3 4 �9 ~C1 J + 6jC2D2 - 3C~ 

-I- 6C2(C2 --b D2) - 6C2D2 - 2Cl C3 + D4 

-3C~D2+~C 4+302 

(2.27) 

(2.28) 

The final quantity that we need in order to compute the renormalized 
coupling constant is the correlation length. It can be derived (4) from the 
momentum-dependent susceptibility, 

7~(n,k,K) =1 ~ ~ exp[ika(r-s)](aras) 
n r = l  s = l  

/ J 
= ~ ~ e x p { i k a [ ( j l - 1 ) ( m + l ) - ( j 2 - 1 ) ( m + l ) ] }  

. h  - 1 J2 : 1 

x (5~jl(k) J *  (k))  (2.29) 

where i = x / ~ ,  k is the momentum, and we define 

~ ( k )  = 1 ~ ikar o. 1 ik.(,,,+ (2.30) ~0"(l 1)(m + 1) -[- e ( l _ l ) ( m + l ) + r ~ - ~ d  l)o'/(rn + 1) 
r = l  

We require that (nka/2~) be an integer. To compute (2.29) we will need the 
two basic ingredients (~ ) r  and (1~[2)r For the first we get 

J J 
[ ~ ( k ) ] = d ( m , k , K )  ~ eikal(m+!)Gl(m+l) (2.31) 

l--1 l 1 
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where [ - ]  is as at  (2.20) and  

sC(m,k ,K)=Re[A+ +A + ( A + - A  )e ~ka(m+l)] (2.32) 

with 

1 (1 + t anh  Ke ~*a)(1 - t anh  m +1 K) + 2 t anh  m+ 1 K(1 - e ika(m + 1)) 

A + = ~ (1 - tanh  Ke~ka)(1 + tanh  m+ 1 K) 

1 (1 + tanh  Ke i*a)(1 - t anh  m +1 K) - 2 t anh  m+ 1 K(1 - e ika(m + 1)) 

(1 --  t anh  Keika)( 1 + tanh  m + 1 K) 

where R e [ .  ] s tands  for the real part .  The factor  to be averaged  agains t  the 
pa r t i t ion  funct ion (2.13) for the second ingredient  is 

( 1 ~ 1 2 ) % ~  U(m, k, K ) +  V(m, k, K) (7(l_l)(m+l)O'l(m+l) (2.33) 

where 

O ( m , k , K ) = ( m + l ) ( ~ + r 2 m + 2 ) (  l - r 2 )  
__ r 2 m u  1 -b r 2 -  2r cos ka  + 1 

2 ( R 1 - -  r m + 3 R 2  "~ 

+ 1 - r 2m+2 _ (1 + - - ~ c o - ~ a ) ) 2 J  

- 2 ( m +  1) r m+l (1 - r  2) 
I2(m, k, K ) -  

(1 - r2m+ 2)(1 + r 2 --  2r cos (ka) )  

2 ( r2R2-rm+lR1 
+ 1 - r  2m+2_(1 +rZ-2rcos(ka))2] 

R1 = - 1  + 2r cos (ka)  - r 2 cos(2ka)  + r m+ 1 cos(ka(m + 1)) 

- 2r m+2 Cos(kam)+ r m+3 cos(ka(m- 1)) 

R2 = cos(ka(m - 1 )) - 2r cos(kam) + r 2 cos(ka(m + 1 )) 

_ rm+ 1 cos(2ka)  + 2r m+2 cos(ka)  - r m+3 

(2.34) 

where we use r as shor t  for tanh  K in these equat ions.  If  we combine  these 
results, and  r emember  to correct  for the over lap  terms in ]Y'.j= 1 [ ~ ] [ 2 ,  we 
ob ta in  

z ( n , k , g ) =  1- Id(m,k ,K) l  2 ~ e i k ~ l ( m + l ) f f l ( m + l )  +jU(m,k ,K)  
n i 1 

- jW(m, k, K)+ [V(m, k, K ) - X ( m ,  k, K ) ]  

• O'(i 1 ) ( m + l ) e l ( m + l )  (2.35) 
l 1 ~ 
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where 

U(m, k, K)= 

V(m, k, K)= 

W(m, k, K ) =  

Y(m, k, K)= 

(J(m,k,K)+Re[A+ +A_ + ( A + - A  )e-ikaCm+l)]--�89 

12(m,k ,K)+Re[A+-A +(A+ + A _ ) e  -ika(''+l)] 

(2.36) - �89 c o s ( k a ( m  + 1 )) 

l lA+ + eika('~+ 1)A* ] 2 +5llA _ --eika(m+l)A * 12 

�89 --e/ka~m+l)A*] 2 

Note that (2.35) reduces to (2.15) when k = 0. 
There are a couple of useful expressions for the correlation length that 

we can derive from z(n, k, K). The first is ~4) 

1 ( _ z ( n , k , K ) )  
~ 2 _ 4  sinZ(lka) 1 z(n, O, K) + O((ka)2) (2.37) 

where the best choice would be the smallest nonzero value for k, i.e., 
ka = 2rein. Another expression is 

~2= [-(4 sine(�89 

[_\sin2(ka) - sin2(lka)J 

x 1 -7.(n, k, K)/z(n, 0, K ) -  1 - z ( n ,  2k, g)/z(n, O, K) (2.38) 

which is exact for our model, the one-dimensional, n-spin Ising model with 
periodic boundary conditions, as the tanh n K terms cancel out in 

1 )~(n, k, K) 4 tanh Ksin2(�89 
(2.39) 

z(n, 0, K) 1 + tanh 2 K -  2 tanh Kcos  ka 

In order to check all these expressions, we note that they are in fact 
the exact renormalization group transformations for the decimation trans- 
formation (s) where m out of every m + 1 spins are summed out. It is the case 
for the one-dimensional model that the space of Hamiltonians is unchanged 
under this transformation. Each such transformation corresponds to the 
map K~--+K,,,, as given by (2.11). As a consequence, for any factorization 
of n = j(m + 1) we always arrive at the exact answer if we use the finite-size 
results for the j-spin, Km system to complete what we have started by 
summing out the contributions from the m block-internal spins. We have 
programmed all these equations and compared a reasonable number of 
cases and find the expected agreement. Double precision (16 decimal 
places) was sometimes required because of the loss of accuracy involved in 
some of the expressions. 

8 2 2 / 7 2 / 3 - 4  - f 5 
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3. A U T O C O R R E L A T I O N  T IMES 

In order to organize a Monte Carlo computation, it is desirable to 
have some idea of the correlation between the configurations found after 
one update (or sweep) of the entire spin lattice. Binder (6~ suggests as a 
rough practical guide, which he justifies by discussions of the two- and 
three-dimensional Ising model, that the autocorrelation time diverges as 
the critical temperature is approached, like the static susceptibility. We will 
find that this suggestion is not correct in our case. 

Since the purpose of this work is to study the improvement generated 
by block-internal summation of the interior spins, we have not used any of 
the more elaborate Monte Carlo methods available, such as the Swendsen- 
Wang (7) algorithms, but rather have used a straightforward Metropolis (8) 
algorithm. It is, of course, possible to combine the present method with 
more sophisticated methods than the Metropolis algorithm and one 
expects that the benefits from both will result in better results than those 
obtained from either method separately. As pointed out in the previous 
section, the decimaton transformation discussed maps the model  onto a 
new Ising model with K ~  Km with the number of spins reduced by a factor 
of (m + 1). Thus we can divide the remaining linear array of j spins into 
those with an odd and those with an even site number. We can then try to 
flip, say all the odd ones, in parallel by the Markov property. If the sum 
of the nearest neighbor spins is zero, then the spin-flip probability is 
one-half. Otherwise the spin-flip probability is given by 

exp(KmtTi(tTi 1-~-~ (3.1) 
P - 2 cosh 2Kin 

These calculations were done on the CM2 and were laid out to perform 
enough Monte Carlo calculations in parallel to keep the 512 floating point 
processors in one of the (quarter) partitions of the machine running at 
what is believed to be a relatively optimal ratio of virtual processors to 
physical processors. 

Once the autocorrelation time has been found, the first ten auto- 
correlation time steps are discarded to avoid initial transients, and then 
only one configuration per autocorrelation time is sampled. The entire run 
is broken down into 40 coarse-grain samples for the purpose of later 
statistical analysis. The number of configurations sampled was chosen to 
achieve the desired final accuracy. 

In order to calculate the autocorrelation time with any degree of 
accuracy, we aim to have a large enough gap between successive sample 
configuration so that the correlation coefficient is of the order of one-half. 
That is in contrast to, say, r = 0.99, where the random errors have a much 
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more significant effect on the estimate of the autocorrelation time. We 
began with the estimate of Binder mentioned above. We arbitrarily choose 
to look at 30 spin configurations (each separated from the previous one by 
the estimated autocorrelation time) for a coarse-grained sample. We then 
took a total of 40 close-grained samples. As the problem, as remarked 
above, again maps onto an Ising problem, we needed only to find the 
autocorrelation time as a function of K and system size. Since in the final 
analysis we wished to consider only systems which are free of finite-size 
effects to the 0.1% level, the effect of system size disappears for sufficiently 
large systems, and leaves only K as an argument. We have computed the 
Mr(K) M,+I(K) and Et(K)E,+ 1(K) correlation functions, where M is the 
magnetization and E the energy, and the time t is measured in units of 
the estimated autocorrelation time. We found, for the large autocorrelation 
times that occur as the temperature decreases toward zero (the critical 
temperature for this model), that the estimated autocorrelation began 
greatly to exceed that of the estimate. In a series of successive calculations, 
the estimate was increased until stability was achieved. Note that the auto- 
correlation time for the energy is noticeably shorter than that for the 
magnetization. Our final estimates are consistent with the result that the 
autocorrelation time for the Metropolis algorithm for the one-dimensional 
Ising model is just 1.00r 2 with a statistical uncertainty of about 5 %.2 The 
correlation length ~ for the infinite, linear-chain Ising model is given by 

~ 2 =  �88 (3.2) 

I am indebted to J. J. Erpenbeck for the simple argument that the penetra- 
tion of a spin flip into a block of spins goes roughly at the rate of about 
1/~ per sweep, and it has to go a distance of ~ to decorrelate effectively, 
which leaves an autocorrelation time of the order of~ 2. In the two- 
dimensional Ising model it is approximately true that 3 2 diverges like the 
susceptibility Z [that is, ( 1 -  Tc/T) -175 versus ( 1 -  Tc/T) -2] and rather 
more closely so in three dimensions. Thus this result is not too different 
from Binder's suggestion in the latter two cases. The behavior of the auto- 
correlation time which we have found corresponds to a dynamical critical 
exponent of z = 2, which is quite a typical value in many problems for the 
Metropolis algorithm. Certainly, for some of the cluster algorithms, for 
example, z is much smaller, and if they were employed, since the critical 
slowing down would be less for those cases, the extra speedup factor 
attributable to this method would be correspondingly less. 

2 Note added: The exponent is exact; see ref. 9. 
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4. M O N T E  CARLO RESULTS 

Near the critical point, which is zero temperature in our model 
(Kc= oe), it is easy to estimate the asymptotic results for the auto- 
correlation times. From (2.11) we can compute that 

exp( -2Km)  x ( m + l ) e x p ( - 2 K )  (4.1) 
K ~ o o  

so by the results of Section 3, we get the autocorrelation time 

C 4 K  

r ~ 2  ~ (4.2) 
K ~  4 (m+  1)2 

The formula (4.1) is exact for m = 0, as no summation takes place in that 
case. From (4.2) we see that there is a speedup factor of (m + 1) 2. We note 
that using the same resources on a parallel machine, since there are a factor 
of (m + 1) fewer spins to sum over, we get an overall speedup factor of 
(m + 1 )3 by running (m + 1 ) independent Monte Carlo runs in parallel. In 
addition we multiply by the number of parallel processors to give the 
appropriate comparison with a serial machine. For  example, for m = 15 
and using a quarter of the CM2 (512 floating point processors) we get a 
speedup of the order of 106. The reason for our choice of m = 15, rather 
than some other arbitrarily large number, is for comparison with what is 
possible when we do not have exact formulas available, as would be the 
case in more complex models. Here the number of states to be summed 
over is 32,768, which means it would have been completely feasible to 
generate the necessary coefficients by direct numerical summation. The next 
(power of two) case gives m = 31, or 2,147,483,648 states to sum over. Of 
course, for our model as explained above, we could get this case easily by 
concatenating two 16-spin blocks. 

An illuminating table (very simple to construct) is Table I, which gives 
the correlation lengths (squared) as a function of block size m + 1 and K 

Table I. The Square of Correlation Length 

K 0.5 1.0 1.5 2.0 2,5 3.0 
m + l \n  16 64 128 512 1024 2048 

1 1.6 13.4 100.6 745 5506 40688 
2 0.35 3.3 25.1 186.2 1377 10172 
4 0.05 0.76 6.2 46.5 344.1 2542.9 
8 0.002 0.14 1.5 11.6 86 636 

16 0.013 0.32 2.8 21.4 159 
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for the cases we will investigate. An added entry is the size n rounded to 
the next largest power of 2, which is needed to ensure that the finite-size 
effects are reduced to about 0.1%. 

In order to lay out our computations, we established the goal of a per- 
centage error of around 0.3 % in the susceptibility. For our model, it is easy 
to give a theoretical estimate of the sum of the squares of the estimator 
for )6 It is directly given by the quadruple sum in (2.5). The dominant 
term in system size is just equal to the subtracted term, which is 3nZz 2. 
Straightforward calculation in this case shows the result to be independent 
of the size of )~ (it scales out) and gives the conclusion that we need about 
200,000 independent repetitions. As remarked above, we divide our samples 
into 40 coarse-grain samples for statistical purposes. Thus we aim to have 
about 5000 samples per coarse grain summary-that  is, the number of 
sweeps per coarse-grain summary would be 5000 times the number in 
Table I. We have used a virtual processor ratio of 32 for efficiency on the 
CM2. That is, each physical processor is given 32 parallel cases to run, 
which reduces the startup computer overhead for each step. On this 
account and because of our organization so that all the parallel processors 
are kept equally busy, the actual number of repetitions per coarse-grain 
summary varies considerably, but is never less than 4096. 

If we had run the case K--  3 with a block size of unity, we would have 
needed about 1.7 x 1013 spin updates. This would have taken an estimated 
500 hr to run with our code. This code is written in CM Fortran for the 
CM2, and has not been particularly streamlined for high performance, as 
that is not the point of this study. It runs at about 8 x 106 spin updates/sec 
on a quarter of the CM2, and could possibly be speeded up considerably 
by using Paris coding and the 16384-bit serial processors in a quarter of 
the CM2. 

In order to assess the adequacy of our procedures, we have computed 
the temporal correlation coefficient between the estimate of the suscep- 
tibility in one coarse-grain sample and that for the next. The results for the 
cases we have run are listed in thousandths in Table II. We see that they 
are sufficiently small so that the error estimates (for)~ certainly) will not 
be significantly affected by these correlations. In fact, since (neglecting 
finite-size effects) we compute that these correlations are expected to be 
s/(m2(1-s2)), where s is the sampled-sweep--sampled-sweep correlation 
and rn 2 is the number of sampled sweeps per coarse-grain sample. For  our 
case, s g e -1 and m2 ~ 5000. Thus the values in Table I! should be about 
10 -4. Consequently what we see is just the random errors of estimation 
about this much smaller value. 

In order to be sure that our method is giving an accurate reflection of 
the errors, we need to compare the predicted errors with the actual errors, 
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Table II. Temporal Correlation Coefficient for the 
Susceptibility (in thousandths) 

K 0.5 1.0 1.5 2.0 2.5 3.0 
m + l \ n  16 64 128 512 1024 2048 

1 3.8 - 1 . 3  - 3 . 1  - 6 . 7  
2 1.3 2.1 3.2 2.9 - 2 . 0  
4 - 0 . 4  2.1 - 0 . ~  1.9 1.1 
8 0.2 - 0 . 8  5.9 1.7 - 0 . 7  - 3 . 8  

16 -0 .043  - 7 . 4  - 2 . 9  7.0 - 0 . 4  
32 1.9 

as computed in terms of the known correct values. We make this com- 
parison for the susceptibility in Table III. We have listed on the first line 
of each entry in Table III the actual errors (in percent) in the susceptibility 
Z estimated by our procedures as compared to the exact analytic results. 
The second line is the predicted root mean square error computed from the 
observed variance of the 40 coarse-grained samples. 

There are several remarks to be made about Table III. First, the 
smaller numbers in the lower and left-hand portions of the table are due to 
our structuring the computer program to use all physical processor and to 
keep a virtual processor ratio of 32. These conditions mean that there is a 
minimum number of repetitions that we are set up to do. In the afore- 
mentioned instances, this minimum greatly exceeds the target number 

Table III. The Error in the Estimated Susceptibility (in percent) 

K 0.5 1.0 1.5 2.0 2.5 3.0 
m + 1 \ n  16 64 128 512 1024 2048 

1 0.2 0.06 -0 .08  - 0 . 5  
0.22 0.31 0.31 0.31 

2 0.10 - 0.2 0.06 0.3 0.09 
0.16 0.32 0.32 0.27 0.31 

4 -0 .01  0.6 - 0 . 0 2  -0 .1  - 0 . 6  
0.09 0.24 0.40 0.28 0.30 

8 0.01 0.1 0.1 0.4 - 0 . 1  
0.03 0.18 0.31 0.31 0.31 

16 0.02 0.01 0.1 -0 .1  
0.06 0.18 0.40 0.34 

32 

0.3 
0.29 

0.3 
0.32 
0.3 
0.35 
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of 5000 per coarse-grained estimate. As there seemed no point in extra 
effort to throw out the additional repetitions, we kept them with the corre- 
spondingly better results. The next point to be noticed is that the errors are 
quite well in accord with the general predictions. Careful examination 
reveals that the estimates are, on average, larger than the true values by 
about 0.4 times the predicted error. The standard statistical chi-squared 
test on the square of the error over the square of the estimated error when 
applied to the data of Table III gives a result quite in line with expectations. 

The statistical analysis of the other quantities which we are computing 
follows the same general pattern, but with different magnitudes for the 
errors. We will not report those in detail. We will discuss, however the 
estimation of the correlation length. The exact formula (2.38) is not suf- 
ficiently stable against random errors to be well adapted for Monte Carlo 
work. Instead we note, starting from (2.39), that 

4sin2 ( ~ k a ) (  1 z(n,Z(n'k'K)) '~ 

(1 - tanh K) 2 + 4 sin2(�89 tanh K 
- tanh K (4.3) 

which is a straight line in 4 sin2(�89 for our model, with unit slope and 
intercept 4 -2 . We have therefore used the average derived for the five 
lowest, nonzero momenta to estimate ~ 2. We remind the reader that for 
our model, as we said in Section 2, there is no finite-size effect. In a formula 
like (2.37), the k 2 term would have a finite-size effect implicitly in it, as the 
smallest allowed k is of the order of 1/j. 

The errors in the energy are much smaller that those in the suscep- 
tibility. Those in the correlation length and the second partial of the 
susceptibility with respect to the magnetic field are larger. We illustrate 
these results in the typical case, K =  2.0, n = 512 with blocks of two spins 
(m = 1). For  this case we find 

E = 0.964080 _+ 0.000031 (0.96402758) 

Z = 54.78_+ 0.15 (54.598149) 

c~2Z (4.4) 
- -4 .810 x 105 _ 9.6 • 103 (-488209.64) a H  2 

42 = 750.6 + 9.8 (744.98950) 

where the exact values are given in parentheses. 
One of our important future goals would be the computation of the 

renormalized coupling constant in three spatial dimensions. For  this reason 
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Table IV. The Error in the Estimated Renormalized 
Coupling Constant (in percent) 

K 0.5 1.0 1.5 2.0 2.5 3.0 
m + l\n 16 64 128 512 1024 2048 

1 0 . 2  - 1 . 6  0.2 1.2 
0.96 2.1 0.89 2.2 

2 0.4 -1.9 -1.3 -2.5 1.3 
0.55 1.7 1.1 1.8 1.1 

4 0.03 -3.5 0.06 -0.8 -0.04 
0.10 2.1 1.3 2.1 1.3 

8 0.003 1.0 - 1.5 1.6 - 1.9 
0.012 1.0 0.85 2.0 1.2 

16 -0.08 1.0 -3.5 1.7 
0.10 0.38 2.5 1.2 

32 

- 1.30 
0.72 
0.3 
0.63 
0.8 
0.69 

we give our  results in detail for the renormalized coupling constant.  First, 
at the points K =  0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, the renormalized coupling 
constant  has the values (for the system sizes listed in Table I) 6.1608036, 
6.0187367, 6.0020793, 6.0003341, 5.9998893, and 5.9957266, respectively. It 
should be noted for our  model  that  in the n ~ oo limit, g/> 6 for all K and 
g --, 6 as K ~ oe for an infinite-size system. In Table IV we give the results 
in detail for the renormalized coupling constant  g. Note  that  the errors are 
much larger here than in the case of  the susceptibility. This reflects in large 
par t  the fact that  the errors in ~32z/3H2 are much larger than in )~ because 
it is a four-point  correlat ion function as opposed to a two-point  correlat ion 
function, and the errors in 42 are somewhat  larger than in Z because of  the 
effective subtract ion of two two-point  correlations necessary to derive it. 
The statistical Z 2 tes t  shows that  the observed actual errors (the first row 
in each category in Table IV) are consistent with the estimated errors (the 
second row in each category in Table IV). The conclusion is that  this 
method  of  error estimation, the root  mean square error  estimate for the 
mean value from our  40 coarse-grained samples, is apparent ly  a valid 
method  of  est imation for our  case, where we have done our  fine-grain 
sampling on sweeps separated by one temporal  correlat ion length. The 
procedures we have adopted,  i.e., 200,000 samples separated by a temporal  
correlation length and grouped into 40 coarse-grained samples, gives an 
estimate of  g for our  model  accurate to within a s tandard error of a round  
2%.  
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Note  tha t  due to a bug in the C M 2  opera t ing  system in t ime-shar ing  
mode,  somet imes  incorrec t  results were p roduced .  The  a u t h o r  believes 

(hopes)  tha t  he has e l imina ted  all such cases from this report .  
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